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Abstraet-This paper is concerned with the application of the finite element method to the problem of finite
axisymmetric deformations of incompressible, elastic solids of revolution. On the basis of approximate dis­
placement fields, nonlinear stiffness relations are derived for a typical finite element. These relations involve
an additional unknown, the hydrostatic pressure, which necessitates the introduction of an incompressibility
condition for each element. Provisions are also made to account for changes in loading due to deformation.
A briefdiscussion of several methods used for solving the systems ofnonlinear equations generated in the analysis
is also given. Numerical solutions to representative problems are included.

1. INTRODUCTION

RELATIVELY few exact solutions to problems of finite axisymmetric deformations of
elastic solids of revolution are available in the literature, and all appear to deal with bodies
of the most simple geometric shapes, and to be based on the assumption that the deformed
shape of the body, equally simple in geometry, is also specified a priori. For example,
the problem ofsymmetric deformations ofa tube subjected to uniform external and internal
pressure is included as a special case of a problem solved by Rivlin [1]; Ericksen and
Rivlin [2] considered the simultaneous inflation and elongation of a hollow cylinder;
Rivlin and Thomas [3] examined radial deformations of a thin sheet containing a circular
hole; and Green and Shield [4] investigated symmetrical expansions of a spherical shell.
Summary accounts of solutions to related problems in finite elasticity can be found in
the books of Green and Zerna [5], Green and Adkins [6], Truesdell and Noll [7],
Eringen [8], and in the collection of reprinted articles edited by Truesdell [9]. More recently,
Baltrukonis and Vaishnav [10] presented solutions to the problem of axisymmetric de­
formations of an infinite hollow elastic cylinder bonded to a thin elastic case. As indicated
by Green and Shield [4], it does not appear to be possible to obtain exact solutions to the
more general problem of finite axisymmetric deformations owing to the nonlinearity of
the governing differential equations and the complexities inherent in irregular geometries
and boundary conditions. Thus, it is natural to seek approximate solutions to this class
of problems.

In the present paper, we consider the general problem of finite axisymmetric de­
formations of incompressible elastic solids of revolution of arbitrary cross-sectional
shape subjected to general axisymmetric loading and boundary conditions. We formulate
solutions of this problem in terms of generalizations of the finite-element technique.
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On the basis of approximations to the displacement fields over finite elements of revolution,
we derive nonlinear stiffness relations for typical finite elements and use these relations
to solve representative problems in finite elasticity.

Applications of the finite-element method to the linear problem of symmetric infini­
tesimal deformations of Hookean solids of revolution were recently given by Rashid [11],
Clough and Rashid [12J, and Rashid [13]. Wilson [14J considered the linear problem of
general, infinitesimal deformations of axisymmetric elastic solids and Becker and Bris­
bane [15], using the variational theorem of Herrmann [16J, developed finite element models
for the analysis of infinitesimal axisymmetric deformations of incompressible elastic
solids of revolution. Extensions of the method to finite elasticity problems have been given
by Oden [17-19J, Oden and Sato [20,21], Oden and Kubitza [22], Becker [23], and for a
class of plane stress problems involving large strains by Herrmann [24], Peterson, Campbell,
and Herrmann [25], and moderately large strains by Argyris [26]. A survey of literature
on applications of this and related numerical techniques to problems of solid propellants
has been given by Parr [27].

In this paper, we present, in the section following this introduction, a brief review of
the basic equations of the theory of finite deformations of elastic solids of revolution.
In Section 3 we discuss the finite-element representation of displacement fields of arbitrary
solids, and in the next section we bring these ideas together to obtain nonlinear stiffness
relations for typical finite elements. For incompressible finite elements, these relations
involve an unknown hydrostatic pressure corresponding to each element, and it is necessary
to introduce a supplementary condition of incompressibility for each finite element. We
then pay special attention to forms of the equations corresponding to Mooney-type
materials, for these lead to results which can be compared to exact solutions already
available. In Section 5 we briefly examine several numerical methods for solving the
large systems of nonlinear equations generated in the analysis. We then present numerical
solutions to representative problems, including the problem of finite deformation of an
incompressible hollow cylinder.

2. FINITE AXISYMMETRIC DEFORMATIONS

We briefly examine here several relations drawn from the theory of finite elasticity [5, 6J.
We consider an elastic solid of revolution of arbitrary cross-sectional shape and suppose
that the locations of material particles in a reference configuration of the body are given
by the convected (intrinsic) cylindrical coordinates Xl r, x 2 = z and x3 = O. The
deformation of the body is determined by the displacement field u = u(r, z, 0) and its
gradient U,i ~ ou/oxi

•

In the following, we confine our attention to the case of purely axisymmetric deforma­
tions, for which u = u(r, z) and the displacement field is determined by radial and axial
components, 14 1 and 142' In this case, the strain-displacement relations reduce to

2)'211 = 142.11 +Up,2 +UI'.2U!P1
1'23 = 0

I
(1)
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where Y~p(a, p, f1 = 1,2) are the covariant components of the strain tensor, u/-I = if and

UI). = 1+-.
r

(2)

The function ). = ).(r, z) is the extension ratio in the circumferential direction; that is,
A is the ratio of the length of a circumferential fiber in the deformed body to its original
length in the reference configuration.

We assume that the material is characterized by a potential function W = W(Yij)
which represents the strain energy per unit volume in the undeformed body. The stress
tensor aij referred to the convected coordinates Xi in the deformed body is then given by [5J

i' 1J(g) (OW o~a J - - - -+-
- 2 G 0Yij OYji

(3)

where g and G denote the determinant of the metric tensors, gij and Gij, in the undeformed
and deformed body, respectively. For an isotropic body, the strain energy function can be
written

(4)

where II, 12 , 13 are principal invariants of the deformation tensor. For the type of de­
formations under consideration,

where

II = 2(1 +Y~)+).21

Iz = 2~Z(1 +Y~)+qJ

13 = A qJ

(5)

(6)

(7)

and e~P is the two-dimensional permutation symbol (e lZ = _e21 = 1; ell = e22 = 0).
In the case of incompressible, isotropic elastic solids, 13 = 1, W = W(II, 12 ) and the

strain energy determines the stress only to within an arbitrary hydrostatic pressure h.
Then (3) reduces to

aij = ~{OW( oIl +OIl) +OW( 012 + OI2)} +~h(013 + (13 )

2 oIl OYij OYji oIz OYij OYji 2 OYij OYji'

For axisymmetric deformations of incompressible, isotropic solids of revolution, (7) yields

oW oW
a~P = 2- b~P+2- [b~P(l +Az) + 2e~). eP/-Iy J+2hA2(b~P + 2e~). eP/-Iy )

oIl oIz )./-1 )./-1

(8)
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3. FINITE ELEMENT APPROXIMATION

We now set out to construct a discrete model of the body by representing it as a collec­
tion of a number E of finite elements of revolution, as indicated in Fig.!. Following the
usual procedure, we isolate a typical finite element e and approximate the local displace­
ment field ul1(x l

, x 2
) over the element by functions of the form [28-31J

(9)

z

J.- -
/'" ---­1/- -,
--t' + "-,

.....---
FIG. 1. Finite-elemenl model of a solid of revolution.

where x = (Xl, x 2
) and UNa are the components of displacement of node N of the element

and 'PN(x) are interpolation functions with the property

(10)

in which XM = xt are the local coordinates of node M and l5Zt is the Kronecker delta.
In (9) and in developments to follow, the repeated nodal index N is to be summed from
I to N e , N e being the total number of node points belonging to element e.

In the present study we shall give special attention to simple triangular elements
(Ne = 3), in which case [18, 19, 29J

(11 )

in which

(12)
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and

x~-x~ xl-x!
N 1

x~-xi xl-xl (13)b.p = 2A
o

xi-x~ x!-xl
Here eNMK is the three-dimensional permutation symbol, e)'1J = e).lJ, Ao is the undeformed
triangular area (assuming a counter-clockwise numbering of nodes as indicated in Fig. 1),
and, as noted previously, x~(M = 1,2,3; A = 1,2) are the coordinates of node M. In
this case, (9) assumes the simple linear form

Introducing (14) into (1), we find that for the finite element

2y.p = lJVpUN.+lJN.UNP+b~b~UMIJlif..

2Y33 = r2(A 2 -1)

1 N N PA = 1+-(a UNI +b,pUNlX)
r

(14)

(15)

(16)

with Xl == rand UMIJ = ut. Stresses in the element can be obtained by introducing (15)
into (8) once the appropriate form of Whas been identified.

4. NONLINEAR STIFFNESS RELATIONS

We now isolate a typical finite element and, following the same scheme outlined in
previous work [18,19], introduce the potential energy functional

V(u) = f Wdv- f F'uadv- f sau.dS
Va VQ So

in which P and sa are the components of body force per unit of undeformed volume Vo

and surface traction per unit undeformed area So, respectively. By introducing (9) into (16)
and using the principle of minimum potential energy, we obtain the nonlinear stiffness
relations

oV(u) = 0 = f oW oYij dv-pN.
OUNa Vo oYij OUNa

where pN. are the components of generalized force at node N :

pN. = f 'PN(x)P dv + f 'PN(x)S' dS.
VQ So

(17)

(18)

The fact that the tractions S' also depend on the displacements UN. is examined later.
In the present analysis, however, we are particularly interested in finite deformations

of incompressible, isotropic elastic solids. Then the strain energy function is of the form
W = W(ll, [2) and the volume of the element is conserved during the deformation. Since
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the local incompressibility condition, 13 = I, is to hold at every point in the continuum,
we require that for the finite element

(19)

Alternately, we can obtain an equivalent incompressibility condition by simply comparing
the volume Vo and v of the element in the undeformed and deformed body:

in which
(20)

Vo = 2rrrAo v = 2rr(r+udA (2Ia, b)

(2Ic, d)

(2Ie)

A = ILtl eMNPea/dxM +UM)(X~+u~)I· (2I[)

Here r is the radial distance to the centroid of the undeformed triangular (cross-sectional)
area Ao of the element, UI is the average of the radial displacements of nodes 1, 2 and 3
of the element, and A is the cross-sectional area of the element after deformation. Either
incompressibility condition, (19) or (20), can be used, but the form of (19) is more con­
venient to use in deriving stiffness relations for the element.

For incompressible solids, we introduce, instead of (16), the modified functional

V(u) = f W(/1,/2)dv-pNaUNa+hf (/3-l)dv (22)
Vo Vo

wherein h plays the role of a Lagrange multiplier and is assumed to be uniform over the
element. Similar procedures have been used in earlier work [15, 16, 18, 19]. From the con­
dition that UNa be such that V[U(UNa)] assumes a stationary value (iJVjouNa = 0), we arrive
at the following nonlinear stiffness relations for a finite element of an isotropic, incom­
pressible, elastic solid of revolution:

(23)

Equation (23) represents a system of six nonlinear equations in the seven unknowns
h, uNa(N = 1,2,3; ex = 1,2). The seventh equation which must be added to complete the
system is the incompressibility condition H(UNa) = 0 given in (20).

5. SPECIAL FORMS OF THE STIFFNESS RELATIONS

Specific forms of (23) can be obtained once the form of W( ) appropriate for the
particular material under consideration is introduced. The well-known Mooney form of
the strain-energy function,

(24)
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where C1 and C2 are constants, is often assumed in problems of finite elasticity, and the
neo-Hookean form

(25)

(26)

is particularly simple.
The nonlinear stiffness relations for a finite element of Mooney material are obtained

by introducing (5), (15) and (24) into (23):

N O)l~ ocp f oJ1.2p " = 2voCr ;--+voC2 -;:\-+[C1 +2C2(1 +~)] a- dvo
uUN" UUN" Vo UN"

f [ o~ 2 (2 ocp aA
2)]+ 2C2 -:l-A +h A -0-+q>-o- dvo

Vo UUN" UN" UN"

where Do is the undeformed volume of the element and

01'$ _ bN(lJfJ+bMu )
;:\ - p" P M"
UUN"

(27)

;:\oq> = 2b~(~ +bVUM,,)[lJf +YPIl{ePP eAIl +eP). e/lP)]
UUN"

The nonlinear stiffness relations for a neo-Hookean material follow immediately from (26)
by setting C2 = O.

A simplified form

The integration of terms in (26) which involve the circumferential extension ratio A
leads to extremely complicated logarithmic forms. To avoid these complications, we shall
use instead of (l5c) an approximate A which is calculated using the average radial dis­
placement over the element and which converges to the exact Aas the dimensions of the
element are made arbitrarily small:

, 1 ii I
Jl = +­

r

Here r and iii are the quantities defined in (2Ic, d). Then

OA2 A-- = 2-(lJNI +lJN2 +c5N3)lJ"1
GUN" r

(28)

(29)

and A is treated as being uniform over the finite element. Equation (26) now reduces to
the simplified form

N" 2 V)'~[ P VA
2

2 oq>P = 2vo(CI +A. C2)~+VO C I +2C2(l + Yp)+hcp]-:l-+ vo(C2+hA )-. (30)
uUN" UUN" VUN"

We remark once again that stiffness relations such as (30) represent six equations in the
seven unknowns h, UN" for each element. To these must be added an incompressibility
condition (20) for each finite element.
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Once the stiffness relations for a typical element are defined, the elements are assembled
into an approximate connected model for the problem at hand. Since the process of
assembling finite elements to form the discrete model is well-documented (e.g. [17), [18]
or f29]), we shall not elaborate on it here. Suffice it to say that final equations involve element
hydrostatic pressures and global values of the generalized nodal forces and displacements.
Boundary conditions involve simply prescribing forces or displacements at boundary
nodal points.

6. CHANGES IN LOADING

In the case of externally applied loads, the generalized forces pNUo of (18) are computed
using the components of surface traction SUo referred to the coordinate lines in the un­
deformed body. The actual forces, however, are available to us only in the deformed body.
Thus, the components SUo depend on the deformation, and it is necessary to express these
forces in terms of the element deformations. In this section we derive general equations
for the tractions su. produced by an external pressure p and the corresponding forces pNUo,

which hold for arbitrary finite element approximations. Following a similar procedure.
we then derive equations for the pNUo for triangular elements of revolution.

General

Consider an arbitrary solid body subjected to a uniform external pressure p. (n the
undeformed configuration Co we establish an intrinsic cartesian reference frame Xi which
becomes curved in a deformed configuration C. An element of surface area dSo in the
undeformed body with unit normal fi = n;i; becomes dS in the deformed body, with unit
normal n niGi = niGi, where G;, Gi are the natural base vectors in C. The cartesian
coordinates of a point in the deformed body relative to the undeformed coordinates are
denoted Zi' A two-dimensional view of the geometry is given in Fig. 2.

The total force exerted by the pressure on the element of area dS in the deformed body
is given by

dF = -po dS = ~ pniGijGj dS

where Gij is the contravariant metric tensor in the deformed body. Noting that

J(G)nidSO = nidS

and

(31)

(32)

(33)

where Uj are the cartesian components of displacement and G = IGijl = l;J, we have

dF = -p--!(G)nlbjm +Uj,m)GimijdSo' (34)

Thus, the components of surface force per unit undeformed area referred to the reference
configuration are

J . (35')Sj = - p (G)iMc5 jm +Uj,m)G,m.

(n the case of symmetric, isochoric deformations of solids of revolution,

GUo /3 = r 2 A2(b Uo /3 +2eUoA
e(JllyAll)

GUo 3 = 0, G,B = <p, G
(36)
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.1
I

FIG. 2 Element of surface area in deformed and undeformed body.

and (35) becomes

(37)

in which A. is given in terms of the radial component of displacement by (2).

Simplified forms

Equation (37) represents a quite complicated relation for the components of surface
force. Fortunately, the forms of the final generalized nodal forces are significantly simplified
if the boundaries are approximated by piecewise linear segments, as is the case in the
present finite element model.

Consider the linear boundary of a triangular element of revolution, as shown in Fig. 3.
The vector L connecting nodal points 1 and 2 in the deformed body is given by

(38)

where

(39a, b)

Thus

(40a)

(40b)
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FIG. 3. Defonned and undeformed finite element boundaries.

L = ILl = (Lr+LDt . (41)

The total force developed on the boundary of the element is

F = -pn(x21 +Xll +Ull +u2dLD.

From the conditions

(42)

we find that

n.n = 1 D.L = 0 (43)

(44)

Finally, distributing the total force F evenly between nodes 1 and 2 and introducing (44)
into (42), we obtain for the components of the applied nodal forces

(45)
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7. THE INFINITE CYLINDER PROBLEM

We now consider the special case of finite axisymmetric deformations of an infinitely
long, thick-walled cylinder subjected to internal pressure. This problem is of special
interest because (1) it is one ofthe few cases for which results can be compared with known
exact solutions (cr. Green and Zerna [5]) and (2) it is one-dimensional, a fact which enables
us to reduce the nonlinear stiffness relations to particularly simple forms. A more general
two-dimensional problem is considered later.

The triangular finite elements of revolution developed previously can be used to portray
axisymmetric (radial) deformations by constructing a finite-element model of a thin disk,
as shown in Fig. 4a. Although the problem can be greatly simplified by equating the
radial displacements of vertically opposed nodes I and T, the finite element characteriza­
tion is subjected to a more severe test by allowing all nodes to displace freely in the radial
direction. Then a model with £ finite elements leads to 2£ +2 nonlinear equations in the
£ +2 unknown nodal displacements and £ unknown element hydrostatic pressures.

z

FIG. 4. Finite-element representations of an infinite cylinder.
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As a first example a hollow cylinder, 7·00 in. internal radius and 18·265 in. external
radius, of Mooney material with C I = 80 psi, C2 20 psi is considered. The cylinder is
subjected to an internal pressure of p = 128·2 psi. A cylinder with similar properties was
examined by Baltrukonis and Vaishnav [10]. Displacement and hydrostatic pressure
profiles for the case E = 10 (22 unknowns) are shown in Fig. 5. We see that for this rather
crude representation slight differences occur between nodal values of radial displacement
of vertically opposed nodes. For the ten-element case, these differences reach as much as
5 per cent, but the average values of top and bottom nodes differ from the exact by only
2 per cent. Hydrostatic pressures in the elements represent only rough averages for this
coarse finite-element mesh. The values indicated in Fig. 5 are obtained by averaging the
elemental hydrostatic pressures of adjacent (upper and lower) elements and assigning
these values to points which are radially midway between nodes. The method of incre­
mental loading, to be discussed subsequently, was used to solve the system of nonlinear
equations generated in this example.

Element stresses, obtained 'by averaging the mean stresses in vertically adjacent ele­
ments, for the case of twenty elements are shown in Fig. 6. It is seen that very good agreement
with the exact solution is obtained.

exact (128.2 psi)

0- - - --0 top row of nodes

0---0 bottom row of nodes

-120

5-110

~
-100...

~

~ -90,..
::t

-O----cor----.....o..--

exact 028.2 psi)

o aVIl. for flnlfe elements

7.0 10.0 15.0
Underforrned Radial Distance CInches)

FIG. 5. Displacement and hydrostatic pressure profiles.
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exact solution
400

finite element solution0
iii.e
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l~
7.0 18.625

FIG. 6. Stresses in cylinder.

Alternate representation

An alternate finite element representation of the infinite cylinder problem is obtained
by using infinite, thin, cylindrical elements as indicated in Fig. 4b. Although numerical
results obtained using this representation are practically the same as those obtained using
models of the type in Fig. 4a, the stiffness equations derived from the purely one-dimen­
sional kinematic relations are significantly simpler than those obtained from two­
dimensional elements. Moreover, the slight discrepancies between displacements of
vertically opposed nodes is automatically avoided.

For a one-dimensional element of unit height constructed of a Mooney material, we
find that the nonlinear stiffness relations are

pNI = 2n(d -rf){~(eIN+e2N)[C I+C2(1 +A?)+A?h] +;/[Cl +Cz(l +d2)+dZh]} (46)

where

(47a, b)

and

d = ~ = 1+U21 -Ull

L o Lo
A.-I Ull+UZI

- + 2, . (48a, b)
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The incompressibility condition is
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I = JeL1 2 (49)

and the generalized force at the interior (or exterior) node due to internal (external) pressure
pIS

pNl = ± 2rc(rN+uNdp (50)

where the positive or negative sign is used if p is an internal pressure (N is the interior
node) or an external pressure (N is the exterior node), respectively.

150

125

'2.100

~
:::J
on
on..
It 75

50

2.0 4.0
Displacement of

(9 elements) (Inches)

FIG. 7. Displacement of interior wall vs. internal pressure.

Some numerical results

Figures 7-11 contain numerical results obtained using (46H50) to solve the thick­
walled cylinder problem described previously (i.e. rint. = 7·00 in., rout. = 18·625 in., C 1 =
80 psi, and C2 = 20 psi). Solutions for a variety of internal pressures were obtained,
ranging from 0 to 150 psi. For this material, an applied internal pressure of 150 psi corres­
ponds to strains of the order of 150 per cent, so that the behavior falls well outside of
that capable of being predicted by theory based on infinitesimal strains. For example,
Fig. 7 indicates the variation of the displacement of the interior wall with the internal
pressure, as computed using 9 finite elements. These results, which are indistinguish­
able from the exact solution, demonstrate that the behavior is decidedly nonlinear.
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FIG. 8. Convergence of finite-element solutions.

1.4

-c..
E.. 1.3Uj

6
"C

1.2~
.!:

.g
1.1....

/exoct~

en 1.0.. 7: ZII'"~..
~CT33~0.9

....
.!!
c
·~0.8
c..
E
i5

0.7

FIG. 9. Convergence of average stress-interior element.
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An indication of the convergence rate is given by Fig. 8. Here we see the ratios of the
displacement of the interior wall to the exact displacement plus the ratio of the hydrostatic
pressure in the first interior element to the average of the exact hydrostatic pressure over
the element, plotted against the number of finite elements. Figure 9 shows the variation of
the ratio of the average stress in this interior element to the exact average over the element
versus the number of finite elements. We observe that convergence is not monotonic
from below for all components, nor is it as rapid for all components as in the case of
hydrostatic pressures. The stresses plotted in Figs. 10 and 11 represent averages of the
predicted values of stress computed at each node. In the present finite element formulation,
hydrostatic pressures are uniform over each element but actual stress components vary
over the elements and the finite element solution exhibits a finite discontinuity in stress
at each interelement boundary.

8. SOLUTION OF THE NONLINEAR EQUATIONS

In this section, we comment briefly on the numerical schemes used in solving the systems
of nonlinear equations generated in the finite element analysis. The well-known Newton­
Raphson method and the classical method of incremental loading were used to obtain
all of the results presented in this paper. Attempts were also made to apply the Fletcher­
Powell method [32] and the simplex search method [33] to the systems of nonlinear
equations.

In general, we are interested in solving a system of N nonlinear equations which can
be put in the form

i = 1,2, ... , N (51)

where Xi are the unknowns (nodal displacements and hydrostatic pressures) and Pi represent
prescribed nodal loadings. By introducing the column vectors f(x) = {fl(X), !2(X), ... ,

!,y(x)}, x = {Xl> X2,' .. , XN}' and P = {PI, P2, ... , PN}, we can also write (51) in the form

f(x) = P (52)

The Newton-Raphson method

In the Newton-Raphson method, we expand f(x) in a Taylor series about a test point XO
and truncate to linear terms in the increment bx = x - XO :

p = f(xO +bx) ~ f(xo) +J(xo)bx.

Here J(x) is the N x N jacobian matrix

(53)

(54)J(x) = [oJ,{x)/OXj].

The solution x" after n iterations is given by the recurrence formula

x" = x"-I-r 1(x"-I)[p_f(x"-I)]. (55)

Although the Newton-Raphson method is one of the oldest techniques for solving
nonlinear equations, it is one of the most reliable methods available. Among its obvious
disadvantages are (1) an initial point (guess) XO must be specified, (2) the inverse of J(X"-I)
must be computed for each cycle, (3) the functions f(X"-I) and their gradients [oJi(X"-I)j
OXj] must be evaluated each cycle and (4) without certain modifications, the method is



514 J. T. ODEN and J. E. KEY

incapable of determining multiple solutions. On the other hand, it converges very quickly
for the type of problem considered here; it is always possible to obtain estimates of error
and of the rate ofconvergence, and, in principle, it can be extended so as to apply to systems
of virtually any type of nonlinear equation, including systems of nonlinear differential
and integral equations.

Incremental loading

The method of incremental loading is based on the idea that if the total load is applied
in sufficiently small increments, the structure will respond linearly during each increment.
In the present problem, nonlinear equations of the form

g(x, p) = 0

are obtained more naturally than the form indicated in (52). Then,

og rig
bg(x, p) = 0 = ;;-bX +;;-bp

(;x up
and, instead of (55), we have

xn = xn-I_Jp-l(xn-l,pn-l)G(xn-l,pn-l)bpn

wherein

Jp(x, p) = [Ogi(X, p)/oxJ
n - I

pn-I = I bpi
j= 1

G(x, p) = diag[ogi(X, p)/Op;].

(56)

(57)

(58)

(59)

(60)

(61)

In applying the method of incremental loading, a given load p is broken into a number
of increments bp and the procedure begins with zero displacements and hydrostatic
pressures corresponding to zero load. The structure responds linearly to the first load
increment. New structural properties, based on the deformed body after the first load
increment, are computed and a second increment is applied. This process is repeated until
all specified load increments are applied.

The method, though closely related to the Newton-Raphson method, is appealing
on physical grounds. No initial "guesses" are required; the starting values have definite
physical interpretations. Moreover, solutions to an entire family of problems are obtained
in the solution process, and provisions for computing instabilities and multiple roots
can be incorporated. Although new gradients [o/;/oxJ must also be computed for each cycle.
use of accurate finite difference approximations for these can be obtained without great
difficulty. Such approximations can also be used in the Newton-Raphson method.

Accuracy of the solution obtained by the method of incremental loading depends
upon the number of increments specified at the onset. Figure 12 shows the displacement
of the interior node in the infinite cylinder problem vs. the internal pressure for 10, 20
and 40 load increments. For 40 increments, the displacement due to an internal pressure
of 128·2 psi is 2·4 per cent in error, compared with an 8·8 per cent error for the 10 increment
case. Although it is possible to improve solutions obtained by incremental loading by
correcting the solution at the end of each cycle in a manner similar to the Newton-Raphson
method, the small increase in accuracy afforded by such modifications was not deemed
necessary in the present studies.
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FIG. 12. Pressure--<!isplacement curves obtained by incremental loading.

Other methods

Two well-known mInimization methods were also used in an attempt to solve the
nonlinear equations generated in this analysis. These are (1) the Fletcher-Powell method
[32J, a gradient technique based on quadratic convergence for functions of N variables
and (2) the simplex-search method [33J, a search routine that does not require the compu­
tation of a gradient. Details and comparisons of these methods can be found in [34].
For large systems of equations, the Fletcher-Powell method often converges faster than
the Newton-Raphson method, but it may fail to converge in cases in which the Newton­
Raphson method is successful [34]. The simplex search method is useful in cases in which
regularity and continuity conditions present problems.

In the present analysis, an accuracy criteria was used wherein solutions obtained by
a given method (FP, NR or simplex search) were required to differ no more than t: = 0·0001
after 50 iterations. Neither the Fletcher-Powell nor the simplex search method were
successful in any of the problems considered in this investigation.

9. INFLATION OF A THICK-WALLED CONTAINER

As a final example, we consider finite axisymmetric deformations of the thick-walled,
incompressible elastic container shown in Fig. 13. Again, it is specified that the material
be of the Mooney type [see equation (24)J, with material constants C I = 80 psi and
C2 = 20 psi. The body is subjected to a uniform internal pressure of 190 psi along the
interior boundary Be. No forces are applied along AB.



516 J. T. ODEN and J. E. KEY

z

B

1--------==-+,:..--f-+-+--------I+lH-t- r

FIG. 13. Undeformed and deformed cross section of thick-walled highly elastic container subjected to
internal pressure.

The finite-element representation for half of the container involves 48 finite elements
connected together at 35 nodal points. This corresponds to 113 unknowns: 48 element
hydrostatic pressures and 65 components of nodal displacement. The particular finite
element model used in this analysis leads to nonlinear stiffness equations for each element
which are polynomials of sixth-degree in the unknown nodal displacements and hydro­
static pressures.

The method of incremental loading was used to solve the system of nonlinear equations,
and nineteen 10 psi load increments were employed. Approximate gradients [c/;/eXj],
computed by finite differences with a specified ~Xi = 0·0001 were used in the recurrence
formulas.

The deformed and unformed geometries of the assemblage of finite elements are shown
to scale in the figure. Stress contours for components 0'11 and R 2a 33 shown in Fig. 14.
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A6CTpaKT-PaGoTa oGcylK,lI,aeT npHMeHeHHe MeTO,ll,a KOHe'lHhIX 3JIeMeHTOB K 3a,ll,a'laM KOHe'lHhIX,
occcHMMeTpH'IecKHx ,lI,e4!0pMal.\HA HeclKHMaeMhIX, ynpyrHx TeJI BpameHHIL Ha OCHOBe npH6JIHlKeHHhIx
nOJIeA ,lI,e4!opMal.\HA, BhlBO,ll,lITCli HeJIHHeAHhIe 3aBHCHMOCTH ,lI,JIli Ko3ClKPHl.\HeHTa lKeCTKOCTH THnH'IHOrO
KOHe'lHOrO 3JIeMeHTa, 3TH 3aBHCHMOCTH 3aKJIIO'IaIOT '1JIeH, 0603Ha'ialOmHA ,lI,oGaBO'IHOe, HeH3BeCTHoe,
fH,lI,pOCTaTH'IecKoe ,lI,aBJIeHHe, 'ITO Tpe6yeT BBe,ll,eHHlI yCJIOBHlI HeclKHMaeMOCTH ,lI,JIli KalK,lI,OrO JJIeMeHTa.
AaeTcli KpaTKHA oG30p HeKOTophiX MeTO,ll,OB, HCnOJIh3yeMhlx ,lI,JIli perneHHlI CHCTeM HeJIHHei'\Hhlx
ypaBHeHHA, oGoGmeHHhIX B npe,ll,JIaraeMOM aHaJIH3e. AalOTCli '1HCJIeHHhle perneHHlI IJ,JIli HJIJIIOCMpau.HH
3a,ll,a'l.


